– Matéria Condensada

U

K.

ĸ

Vibrações cristalinas

Introdução

• Coesão cristalina

Introdução

Coesão cristalina

Potential energy (V)

$$V(x) \approx V(x_{eq}) + \frac{\kappa}{2}(x - x_{eq})^2$$

 $-\kappa(\delta x_{eq}) = F$

$$V(x) \approx V(x_{eq}) + \frac{\kappa}{2}(x - x_{eq})^2$$

 $-\kappa(\delta x_{eq}) = F$

$$-\frac{\kappa_3}{3!}(x-x_{eq})^3+\ldots$$

Aproximação Harmônica

Aproximação Harmônica

$$\begin{cases} F_1 = -Ku_1 - K(u_1 - u_2) = -2Ku_1 + Ku_2 \\ F_2 = -Ku_2 - K(u_2 - u_1) = Ku_1 - 2Ku_2 \end{cases}$$

$$F = -\boldsymbol{\Phi} \cdot \boldsymbol{u}$$

$$\boldsymbol{\Phi} = \begin{bmatrix} 2K & -K \\ -K & 2K \end{bmatrix} = -\begin{bmatrix} \frac{\partial F_1}{\partial u_1} & \frac{\partial F_1}{\partial u_2} \\ \frac{\partial F_2}{\partial u_1} & \frac{\partial F_2}{\partial u_2} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{\partial^2 U}{\partial u_1 \partial u_1} & \frac{\partial^2 U}{\partial u_1 \partial u_2} \\ \frac{\partial^2 U}{\partial u_2 \partial u_1} & \frac{\partial^2 U}{\partial u_2 \partial u_2} \\ 0 \end{bmatrix}$$

 $\boldsymbol{E} = \frac{1}{2} \mathbf{u} \cdot \boldsymbol{\Phi} \cdot \mathbf{u}$

Matriz de constantes de forças

$$q_{1} = \frac{u_{1} + u_{2}}{\sqrt{2}}; \ q_{2} = \frac{u_{1} - u_{2}}{\sqrt{2}} \qquad E = \left[\frac{1}{2}M\dot{q}_{1}^{2} + \frac{1}{2}M\omega_{1}^{2}q_{1}^{2}\right] + \left[\frac{1}{2}M\dot{q}_{2}^{2} + \frac{1}{2}M\omega_{2}^{2}q_{2}^{2}\right]$$
$$\omega_{1} = \sqrt{K/M} \qquad \omega_{2} = \sqrt{3K/M}$$

$$q_{1} = \frac{u_{1} + u_{2}}{\sqrt{2}}; \ q_{2} = \frac{u_{1} - u_{2}}{\sqrt{2}} \qquad E = \left[\frac{1}{2}M\dot{q}_{1}^{2} + \frac{1}{2}M\omega_{1}^{2}q_{1}^{2}\right] + \left[\frac{1}{2}M\dot{q}_{2}^{2} + \frac{1}{2}M\omega_{2}^{2}q_{2}^{2}\right]$$
$$\omega_{1} = \sqrt{K/M} \qquad \omega_{2} = \sqrt{3K/M}$$

Como descrever um problema com N átomos?

$$q_{1} = \frac{u_{1} + u_{2}}{\sqrt{2}}; \ q_{2} = \frac{u_{1} - u_{2}}{\sqrt{2}} \qquad E = \left[\frac{1}{2}M\dot{q}_{1}^{2} + \frac{1}{2}M\omega_{1}^{2}q_{1}^{2}\right] + \left[\frac{1}{2}M\dot{q}_{2}^{2} + \frac{1}{2}M\omega_{2}^{2}q_{2}^{2}\right]$$
$$\omega_{1} = \sqrt{K/M} \qquad \omega_{2} = \sqrt{3K/M}$$

Como descrever um problema com N átomos?

 $U(\mathbf{r}) = U(\mathbf{r}^0 + \mathbf{u}) = U(\mathbf{r}^0) + (\mathbf{u} \cdot \nabla)U\Big|_0 + \frac{1}{2}(\mathbf{u} \cdot \nabla)^2 U\Big|_0 + \dots$

$$\begin{aligned} & 0 \\ U(\mathbf{r}) = U(\mathbf{r}^{0} + \mathbf{u}) = U(\mathbf{r}^{0}) + (\mathbf{u} \cdot \nabla)U|_{0} + \frac{1}{2}(\mathbf{u} \cdot \nabla)^{2}U|_{0} + \dots \\ & \frac{1}{2}(\mathbf{u} \cdot \nabla)^{2}U|_{0} = \frac{1}{2} \left(u_{1}\frac{\partial}{\partial u_{1}} + \dots + u_{3N}\frac{\partial}{\partial u_{3N}} \right) \left(u_{1}\frac{\partial}{\partial u_{1}} + \dots + u_{3N}\frac{\partial}{\partial u_{3N}} \right) U|_{0} = \\ & = \frac{1}{2} \sum_{\substack{\mu=1,\dots,3N\\\nu=1,\dots,3N}} u_{\mu} \left(\frac{\partial^{2}U}{\partial u_{\mu}\partial u_{\nu}} \right) |_{0} u_{\nu} \end{aligned}$$

$$U(\mathbf{r}) = U(\mathbf{r}^{0} + \mathbf{u}) = U(\mathbf{r}^{0}) + (\mathbf{u} \cdot \nabla)U|_{0} + \frac{1}{2}(\mathbf{u} \cdot \nabla)^{2}U|_{0} + \dots$$

$$\frac{1}{2}(\mathbf{u} \cdot \nabla)^{2}U|_{0} = \frac{1}{2}\left(u_{1}\frac{\partial}{\partial u_{1}} + \dots + u_{3N}\frac{\partial}{\partial u_{3N}}\right)\left(u_{1}\frac{\partial}{\partial u_{1}} + \dots + u_{3N}\frac{\partial}{\partial u_{3N}}\right)U|_{0} =$$

$$= \frac{1}{2}\sum_{\substack{\nu=1,\dots,3N\\\nu=1,\dots,3N}} u_{\mu}\left(\frac{\partial^{2}U}{\partial u_{\mu}\partial u_{\nu}}\right)|_{0}u_{\nu}$$

$$\mathbf{\Phi} = \begin{bmatrix}\frac{\partial^{2}U}{\partial u_{1}\partial u_{1}}|_{0} & \dots & \frac{\partial^{2}U}{\partial u_{1}\partial u_{3N}}|_{0}\\ \vdots & \ddots & \vdots\\ \frac{\partial^{2}U}{\partial u_{3N}\partial u_{1}}|_{0} & \dots & \frac{\partial^{2}U}{\partial u_{3N}\partial u_{3N}}|_{0}\end{bmatrix}$$

1. A matriz de constante de forças é simétrica: $\Phi_{\mu\nu} = \Phi_{\nu\mu}$

$$2. \qquad \sum_{\mu} \Phi_{\mu 1} = 0$$

Dificuldades: Diagonalizar a matriz de constante de forças pode ser desafiador.

$$\boldsymbol{\Phi} = \begin{bmatrix} 2K & -K & 0 & 0 & \cdots & 0 & -K \\ -K & 2K & -K & 0 & \cdots & 0 & 0 \\ 0 & -K & 2K & -K & 0 & \cdots & 0 & 0 \\ 0 & 0 & -K & 2K & -K & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & -K & 0 \\ 0 & 0 & 0 & 0 & 0 & 2K & -K \\ -K & 0 & 0 & 0 & 0 & -K & 2K \end{bmatrix}.$$

Modos Normais de Vibração

 Os modos normais são excitações coletivas nas quais todos os átomos oscilam com a mesma freqüência.

https://en.wikipedia.org/wiki/Phonon

Modos Normais de Vibração

$$m\frac{d^2x_n}{dt^2} = \kappa(\delta x_{n+1} - \delta x_n) - \kappa(\delta x_n - \delta x_{n-1})$$

Estudo dos Modos Normais

$$m\frac{d^2x_n}{dt^2} = \kappa(\delta x_{n+1} - \delta x_n) - \kappa(\delta x_n - \delta x_{n-1})$$

- Buscaremos soluções para os modos normais a partir da ansatz

$$\delta x_n = A e^{i\omega t - ikx_n^{eq}} = A e^{i(\omega t - nka)}$$

$$\delta x_0 = A e^{i\omega t} \quad \delta x_1 = A e^{i\omega t} e^{-ika} \quad \delta x_2 = A e^{i\omega t} e^{-2ika}$$

$$-m\omega^2 A e^{i\omega t - ikna} = \kappa A e^{i\omega t} \left[e^{-ika(n+1)} + e^{-ika(n-1)} - 2e^{-ikan} \right]$$

$$-m\omega^2 A e^{i\omega t - ikna} = \kappa A e^{i\omega t} \left[e^{-ika(n+1)} + e^{-ika(n-1)} - 2e^{-ikan} \right]$$

$$m\omega^{2} = 2\kappa[1 - \cos(ka)] = 4\kappa \sin^{2}(ka/2)$$

$$Relação de dispersão$$

$$\omega = 2\sqrt{\frac{\kappa}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|$$

$$\omega = 2\sqrt{\frac{\kappa}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|$$

$$u = 2\sqrt{\frac{\kappa}{m}} \left| \sin\left(\frac{ka}{2}\right) \right|$$

$$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{1}{\rho\beta}}$$

$$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{1}{\rho\beta}}$$

Compressibilidade

$$\beta = -\frac{1}{V} \frac{\partial V}{\partial P}$$
$$\beta = -\frac{1}{L} \frac{\partial L}{\partial F} = \frac{1}{\kappa x_{eq}} = \frac{1}{\kappa a}$$
$$v = \sqrt{\frac{\kappa a^2}{m}}.$$

$$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{1}{\rho\beta}}$$

Compressibilidade

$$\beta = -\frac{1}{V} \frac{\partial V}{\partial P}$$
$$\beta = -\frac{1}{L} \frac{\partial L}{\partial F} = \frac{1}{\kappa x_{eq}} = \frac{1}{\kappa a}$$
$$v = \sqrt{\frac{\kappa a^2}{m}}.$$

Velocidade de grupo

$$v_{group} = d\omega/dk$$

$$v = \sqrt{\frac{B}{\rho}} = \sqrt{\frac{1}{\rho\beta}}$$

Compressibilidade

$$\beta = -\frac{1}{V} \frac{\partial V}{\partial P}$$
$$\beta = -\frac{1}{L} \frac{\partial L}{\partial F} = \frac{1}{\kappa x_{eq}} = \frac{1}{\kappa a}$$
$$v = \sqrt{\frac{\kappa a^2}{m}}.$$

Velocidade de grupo

1ª Zona de Brillouin

• Seja uma cadeia formada por dois tipos de átomos (ou ligações).

• Seja uma cadeia formada por dois tipos de átomos (ou ligações).

• Definição de célula unitária.

• Seja uma cadeia formada por dois tipos de átomos (ou ligações).

- Definição de célula unitária.
- **Base:** 0, *d*

• Seja uma cadeia formada por dois tipos de átomos (ou ligações).

- Definição de célula unitária.
- **Base:** 0, d

• 1ª Zona de Brillouin:
$$k \in \left[-\frac{\pi}{a}, \frac{\pi}{a}\right]$$

• Seja uma cadeia formada por dois tipos de átomos (ou ligações).

• Devemos encontrar os modos normais de vibração!

• As equações de movimento neste caso são:

$$m\frac{d^2(\delta x_n)}{dt^2} = \kappa_2(\delta y_n - \delta x_n) + \kappa_1(\delta y_{n-1} - \delta x_n)$$
$$m\frac{d^2(\delta y_n)}{dt^2} = \kappa_1(\delta x_{n+1} - \delta y_n) + \kappa_2(\delta x_n - \delta y_n)$$

$$(n=1,\cdots,N)$$

As equações de movimento neste caso são:

$$m\frac{d^2(\delta x_n)}{dt^2} = \kappa_2(\delta y_n - \delta x_n) + \kappa_1(\delta y_{n-1} - \delta x_n)$$
$$m\frac{d^2(\delta y_n)}{dt^2} = \kappa_1(\delta x_{n+1} - \delta y_n) + \kappa_2(\delta x_n - \delta y_n)$$

$$(n=1,\cdots,N)$$

• Ansätze:

$$\delta x_n = A_x e^{-ikna+i\omega t}$$

As equações de movimento neste caso são:

$$m\frac{d^2(\delta x_n)}{dt^2} = \kappa_2(\delta y_n - \delta x_n) + \kappa_1(\delta y_{n-1} - \delta x_n)$$
$$m\frac{d^2(\delta y_n)}{dt^2} = \kappa_1(\delta x_{n+1} - \delta y_n) + \kappa_2(\delta x_n - \delta y_n)$$

$$(n=1,\cdots,N)$$

• Ansätze:

$$\delta x_n = A_x e^{-ikna+i\omega t}$$

$$\delta y_n = A_y e^{-ikna+i\omega t}$$

As equações de movimento neste caso são:

$$m\frac{d^2(\delta x_n)}{dt^2} = \kappa_2(\delta y_n - \delta x_n) + \kappa_1(\delta y_{n-1} - \delta x_n)$$
$$m\frac{d^2(\delta y_n)}{dt^2} = \kappa_1(\delta x_{n+1} - \delta y_n) + \kappa_2(\delta x_n - \delta y_n)$$

$$(n=1,\cdots,N)$$

• Ansätze:

$$\delta x_n = A_x e^{-ikna+i\omega t}$$

$$\delta y_n = A_y e^{-ikna+i\omega t}$$

• As equações de movimento neste caso são:

$$\delta x_n = A_x e^{-ikna+i\omega t} \qquad m \frac{d^2 (\delta x_n)}{dt^2} = \kappa_2 (\delta y_n - \delta x_n) + \kappa_1 (\delta y_{n-1} - \delta x_n) \\ \delta y_n = A_y e^{-ikna+i\omega t} \qquad m \frac{d^2 (\delta y_n)}{dt^2} = \kappa_1 (\delta x_{n+1} - \delta y_n) + \kappa_2 (\delta x_n - \delta y_n)$$

• As equações de movimento neste caso são:

$$\begin{split} \delta x_n &= A_x e^{-ikna+i\omega t} & m \frac{d^2 \left(\delta x_n\right)}{dt^2} &= \kappa_2 \left(\delta y_n - \delta x_n\right) + \kappa_1 \left(\delta y_{n-1} - \delta x_n\right) \\ \delta y_n &= A_y e^{-ikna+i\omega t} & m \frac{d^2 \left(\delta y_n\right)}{dt^2} &= \kappa_1 \left(\delta x_{n+1} - \delta y_n\right) + \kappa_2 \left(\delta x_n - \delta y_n\right) \end{split}$$

• Após alguma álgebra:

$$m\omega^2 \begin{pmatrix} A_x \\ A_y \end{pmatrix} = \begin{pmatrix} \kappa_1 + \kappa_2 & -\kappa_2 - \kappa_1 e^{ika} \\ -\kappa_2 - \kappa_1 e^{-ika} & \kappa_1 + \kappa_2 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \end{pmatrix}$$

As equações de movimento neste caso são:

$$\begin{split} \delta x_n &= A_x e^{-ikna+i\omega t} & m \frac{d^2 \left(\delta x_n\right)}{dt^2} &= \kappa_2 \left(\delta y_n - \delta x_n\right) + \kappa_1 \left(\delta y_{n-1} - \delta x_n\right) \\ \delta y_n &= A_y e^{-ikna+i\omega t} & m \frac{d^2 \left(\delta y_n\right)}{dt^2} &= \kappa_1 \left(\delta x_{n+1} - \delta y_n\right) + \kappa_2 \left(\delta x_n - \delta y_n\right) \end{split}$$

• Após alguma álgebra:

$$m\omega^{2} \begin{pmatrix} A_{x} \\ A_{y} \end{pmatrix} = \begin{pmatrix} \kappa_{1} + \kappa_{2} & -\kappa_{2} - \kappa_{1}e^{ika} \\ -\kappa_{2} - \kappa_{1}e^{-ika} & \kappa_{1} + \kappa_{2} \end{pmatrix} \begin{pmatrix} A_{x} \\ A_{y} \end{pmatrix}$$

As equações de movimento neste caso são:

$$\begin{split} \delta x_n &= A_x e^{-ikna+i\omega t} & m \frac{d^2 \left(\delta x_n\right)}{dt^2} &= \kappa_2 \left(\delta y_n - \delta x_n\right) + \kappa_1 \left(\delta y_{n-1} - \delta x_n\right) \\ \delta y_n &= A_y e^{-ikna+i\omega t} & m \frac{d^2 \left(\delta y_n\right)}{dt^2} &= \kappa_1 \left(\delta x_{n+1} - \delta y_n\right) + \kappa_2 \left(\delta x_n - \delta y_n\right) \end{split}$$

• Após alguma álgebra:

Para cada k há 2 ω 's!!

$$m\omega^2 \begin{pmatrix} A_x \\ A_y \end{pmatrix} = \begin{pmatrix} \kappa_1 + \kappa_2 & -\kappa_2 - \kappa_1 e^{ika} \\ -\kappa_2 - \kappa_1 e^{-ika} & \kappa_1 + \kappa_2 \end{pmatrix} \begin{pmatrix} A_x \\ A_y \end{pmatrix}$$

$$\omega_{\pm} = \sqrt{\frac{\kappa_1 + \kappa_2}{m} \pm \frac{1}{m}\sqrt{\kappa_1^2 + \kappa_2^2 + 2\kappa_1\kappa_2\cos(ka)}}$$

• Autovetores $ka \ll 1$:

$$\omega_{-} \rightarrow A_1 = A_2$$

$$\omega_{\pm} = \sqrt{\frac{\kappa_1 + \kappa_2}{m} \pm \frac{1}{m}\sqrt{\kappa_1^2 + \kappa_2^2 + 2\kappa_1\kappa_2\cos(ka)}}$$

• Autovetores $ka \ll 1$:

$$\omega_+ \to A_1 = -A_2$$

• Outra forma de representar a relação de dispersão:

Como descrever um problema similar com N átomos?

$$\mathbf{u} = \mathbf{u}_{\mathbf{R},\tau}(t) = u_{\mathbf{R},\tau,x}(t)\hat{x} + u_{\mathbf{R},\tau,y}(t)\hat{y} + u_{\mathbf{R},\tau,z}(t)\hat{z}$$

Como descrever um problema similar com N átomos?

$$\mathbf{u} = \mathbf{u}_{\mathbf{R},\tau}(t) = u_{\mathbf{R},\tau,x}(t)\hat{x} + u_{\mathbf{R},\tau,y}(t)\hat{y} + u_{\mathbf{R},\tau,z}(t)\hat{z}$$

 $R+\tau$

6

Como descrever um problema similar com N átomos?

$$\mathbf{u} \equiv \mathbf{u}_{\mathbf{R},\tau}(t) = u_{\mathbf{R},\tau,x}(t)\hat{x} + u_{\mathbf{R},\tau,y}(t)\hat{y} + u_{\mathbf{R},\tau,z}(t)\hat{z}$$

$$\mathbf{u}_{\mathbf{R},\tau}(t) = \frac{1}{\sqrt{M_{\tau}}}\sum_{\mathbf{k}}\hat{\mathbf{\varepsilon}}_{\tau}(\mathbf{k})e^{i[\mathbf{k}\cdot\mathbf{R}-\omega(\mathbf{k})t]}$$

$$\mathbf{q}_{\mathbf{k}}(t) = \frac{1}{\sqrt{M_{\tau}}}\hat{\mathbf{\varepsilon}}_{\tau}(\mathbf{k})e^{i[\mathbf{k}\cdot\mathbf{R}-\omega(\mathbf{k})t]}$$

Notem que o uso de PBC nos leva nos mesmos vetores da rede recíproca do caso eletrônico, que, por sua vez, nos levam nos mesmos vetores k's da 1ª ZB.

$$\mathbf{u}_{\mathbf{R},\tau} = \mathbf{u}_{\mathbf{R}+N_i \mathbf{a}_i,\tau} \qquad \mathbf{k} = \frac{n_1}{N_1} \mathbf{b}_1 + \frac{n_2}{N_2} \mathbf{b}_2 + \frac{n_3}{N_3} \mathbf{b}_3$$

$$M_{\tau}\ddot{u}_{\mathbf{R},\tau,\alpha} = F_{\mathbf{R},\tau,\alpha} = -(\mathbf{\Phi}\cdot\mathbf{u})_{\mathbf{R},\tau,\alpha} = -\sum_{\mathbf{R}',\tau',\alpha'} \Phi_{\mathbf{R}\tau\alpha,\mathbf{R}'\tau'\alpha'} u_{\mathbf{R}',\tau',\alpha'}$$

$$\omega^{2} \varepsilon_{i}(\mathbf{k}) = \sum_{j} \left[\sum_{\mathbf{R}'} \frac{\Phi_{\mathbf{R}i,\mathbf{R}'j} e^{-i\mathbf{k}\cdot(\mathbf{R}-\mathbf{R}')}}{\sqrt{M_{i}M_{j}}} \right] \varepsilon_{j}(\mathbf{k}) - \left[\begin{array}{c} \omega^{2} \hat{\mathbf{\epsilon}}(\mathbf{k}) = \mathbf{D}(\mathbf{k}) \cdot \hat{\mathbf{\epsilon}}(\mathbf{k}) \\ D_{ij}(\mathbf{k}) = \frac{1}{\sqrt{M_{i}M_{j}}} \sum_{\mathbf{R}'} \Phi_{\mathbf{R}i,\mathbf{R}'j} e^{-i\mathbf{k}\cdot(\mathbf{R}-\mathbf{R}')} \end{array} \right]$$

 $D(k) \rightarrow$ matriz dinâmica

$$i \equiv (\mathbf{\tau}, \alpha)$$

3N x 3N

$$\boldsymbol{\Phi} = \begin{bmatrix} 2K & -K & 0 & 0 & \cdots & 0 & -K \\ -K & 2K & -K & 0 & \cdots & 0 & 0 \\ 0 & -K & 2K & -K & \cdots & 0 & 0 \\ 0 & 0 & -K & 2K & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & -K & 0 \\ 0 & 0 & 0 & 0 & 0 & 2K & -K \\ -K & 0 & 0 & 0 & 0 & -K & 2K \end{bmatrix}.$$

$$D(k) = \frac{4K}{M} \operatorname{sen}^2\left(\frac{ka}{2}\right)$$

$$D(k) = \frac{1}{m} \begin{pmatrix} \kappa_1 + \kappa_2 & -\kappa_2 - \kappa_1 e^{ika} \\ -\kappa_2 - \kappa_1 e^{-ika} & \kappa_1 + \kappa_2 \end{pmatrix}$$

Contribuição térmica

$$E = \frac{\int \mathrm{d}\Gamma \,\mathcal{H}\mathrm{e}^{-\beta\mathcal{H}}}{\int \mathrm{d}\Gamma \,\mathrm{e}^{-\beta\mathcal{H}}}$$

com

$$\mathrm{d}\Gamma = \prod_{m,\mu} \mathrm{d}\boldsymbol{u}(m,\mu) \,\mathrm{d}\boldsymbol{P}(m,\mu)$$

Contribuição térmica

$$E = \frac{\int \mathrm{d}\Gamma \,\mathcal{H}\mathrm{e}^{-\beta\mathcal{H}}}{\int \mathrm{d}\Gamma \,\mathrm{e}^{-\beta\mathcal{H}}}$$

$$\mathrm{d}\Gamma = \prod_{m,\mu} \mathrm{d}\boldsymbol{u}(m,\mu) \,\mathrm{d}\boldsymbol{P}(m,\mu)$$

Mudando para modos normais, temos

com

$$E = \sum_{\boldsymbol{q},\lambda} \frac{\int \mathrm{d}\Gamma_{\lambda}(\boldsymbol{q}) \,\mathcal{H}_{\lambda}(\boldsymbol{q}) \mathrm{e}^{-\beta \mathcal{H}_{\lambda}(\boldsymbol{q})}}{\int \mathrm{d}\Gamma_{\lambda}(\boldsymbol{q}) \,\mathrm{e}^{-\beta \mathcal{H}_{\lambda}(\boldsymbol{q})}}$$

$$\operatorname{com} \left[\begin{array}{l} \mathrm{d}\Gamma = \prod_{\boldsymbol{q},\lambda} \mathrm{d}|Q_{\lambda}(\boldsymbol{q})| \,\mathrm{d}|P_{\lambda}(\boldsymbol{q})| \,. \\ \\ \mathcal{H}_{\lambda}(\boldsymbol{q}) = \frac{1}{2} \left\{ |P_{\lambda}(\boldsymbol{q})|^{2} + \omega_{\lambda}^{2}(\boldsymbol{q})|Q_{\lambda}(\boldsymbol{q})|^{2} \right\} \end{array} \right]$$

Contribuição térmica

$$E = \frac{\int \mathrm{d}\Gamma \,\mathcal{H}\mathrm{e}^{-\beta\mathcal{H}}}{\int \mathrm{d}\Gamma \,\mathrm{e}^{-\beta\mathcal{H}}}$$

$$\mathrm{d}\Gamma = \prod_{m,\mu} \mathrm{d}\boldsymbol{u}(m,\mu) \,\mathrm{d}\boldsymbol{P}(m,\mu)$$

Mudando para modos normais, temos

$$E = \sum_{\boldsymbol{q},\lambda} \frac{\int \mathrm{d}\Gamma_{\lambda}(\boldsymbol{q}) \,\mathcal{H}_{\lambda}(\boldsymbol{q}) \mathrm{e}^{-\beta \mathcal{H}_{\lambda}(\boldsymbol{q})}}{\int \mathrm{d}\Gamma_{\lambda}(\boldsymbol{q}) \,\mathrm{e}^{-\beta \mathcal{H}_{\lambda}(\boldsymbol{q})}} \quad \text{com} \quad \mathbf{d}\Gamma = \prod_{\boldsymbol{q},\lambda} \mathrm{d}|Q_{\lambda}(\boldsymbol{q})| \,\mathrm{d}|P_{\lambda}(\boldsymbol{q})| \,.$$
$$\mathcal{H}_{\lambda}(\boldsymbol{q}) = \frac{1}{2} \left\{ |P_{\lambda}(\boldsymbol{q})|^{2} + \omega_{\lambda}^{2}(\boldsymbol{q})|Q_{\lambda}(\boldsymbol{q})|^{2} \right\}$$

com

Lei de Dulong e Petit.

Fônons

• Quantizando o hamiltoniano clássico

$$\hat{H} = \sum_{k} \hbar \omega_k \left(a_k^{\dagger} a_k + \frac{1}{2} \right)$$

Fônons

• Quantizando o hamiltoniano clássico

$$\hat{H} = \sum_{k} \hbar \omega_k \left(a_k^{\dagger} a_k + \frac{1}{2} \right)$$

$$E_n^{(k)} = \hbar\omega_k \left(n + \frac{1}{2} \right)$$

k = 6π/6a
$$\lambda$$
 = 2.00a ω_k = 2.00ω
k = 5π/6a λ = 2.40a ω_k = 1.93ω
k = 4π/6a λ = 3.00a ω_k = 1.73ω
k = 3π/6a λ = 4.00a ω_k = 1.41ω
k = 2π/6a λ = 6.00a ω_k = 1.00ω
k = 1π/6a λ = 12.00a ω_k = 0.52ω
https://en.wikipedia.org/wiki/Phonon

$$p(n_{\mathbf{k}s}) = \frac{e^{-\beta E_{n_{\mathbf{k}s}}}}{\sum_{n_{\mathbf{k}s}} e^{-\beta E_{n_{\mathbf{k}s}}}}$$

$$p(n_{\mathbf{k}s}) = \frac{e^{-\beta E_{n_{\mathbf{k}s}}}}{\sum_{n_{\mathbf{k}s}} e^{-\beta E_{n_{\mathbf{k}s}}}}$$

Logo, o valor médio de fônons é

$$< n_{\mathbf{k}s} >= \frac{\sum_{n_{\mathbf{k}s}} n_{\mathbf{k}s} e^{-\beta E_{n_{\mathbf{k}s}}}}{\sum_{n_{\mathbf{k}s}} e^{-\beta E_{n_{\mathbf{k}s}}}} = \frac{\sum_{n_{\mathbf{k}s}} n_{\mathbf{k}s} e^{-\beta n_{\mathbf{k}s} \hbar \omega_{s}(\mathbf{k})}}{\sum_{n_{\mathbf{k}s}} e^{-\beta n_{\mathbf{k}s} \hbar \omega_{s}(\mathbf{k})}}$$

$$p(n_{\mathbf{k}s}) = \frac{e^{-\beta E_{n_{\mathbf{k}s}}}}{\sum_{n_{\mathbf{k}s}} e^{-\beta E_{n_{\mathbf{k}s}}}}$$

Logo, o valor médio de fônons é

$$p(n_{\mathbf{k}s}) = \frac{e^{-\beta E_{n_{\mathbf{k}s}}}}{\sum_{n_{\mathbf{k}s}} e^{-\beta E_{n_{\mathbf{k}s}}}}$$

Logo, o valor médio de fônons é

 $< n_{\mathbf{k}s} >$ $e^{\beta \hbar \omega_s(\mathbf{k})}$
Probabilidade de encontrarmos um fônon com uma energia En:

$$p(n_{\mathbf{k}s}) = \frac{e^{-\beta E_{n_{\mathbf{k}s}}}}{\sum_{n_{\mathbf{k}s}} e^{-\beta E_{n_{\mathbf{k}s}}}}$$

Logo, o valor médio de fônons é

 $< n_{\mathbf{k}s} > = \cdot$ $u = u_0 + \frac{1}{V} \sum_{s=1}^{\frac{1}{2}} \hbar \omega_s(\mathbf{k}) + \frac{1}{V} \sum_{s=1}^{\frac{1}{2}} \frac{\hbar \omega_s(\mathbf{k})}{e^{\beta \hbar \omega_s(\mathbf{k})} - 1}$

Probabilidade de encontrarmos um fônon com uma energia En:

$$p(n_{\mathbf{k}s}) = \frac{e^{-\beta E_{n_{\mathbf{k}s}}}}{\sum_{n_{\mathbf{k}s}} e^{-\beta E_{n_{\mathbf{k}s}}}}$$

Logo, o valor médio de fônons é

$$c = \frac{1}{V} \frac{\partial}{\partial T} \sum_{ks} \frac{\hbar \omega_s(k)}{\beta \hbar \omega_s(k)} = \frac{1}{V} \sum_{ks} k_B$$
$$= \frac{3N}{V} k_B = 3nk_B$$

OK! Reproduz o limite clássico de Dulong e Petit.

Limite de baixas temperaturas: Modelo de Einstein

$$\omega_s(\mathbf{k}) = \omega_E$$

Fônons puramente óticos

$$c = \frac{1}{V} \frac{\partial}{\partial T} \sum_{ks} \frac{\hbar \omega_s(k)}{\beta \hbar \omega_s(k)} = \frac{1}{V} \sum_{ks} k_B$$
$$= \frac{3N}{V} k_B = 3nk_B$$

OK! Reproduz o limite clássico de Dulong e Petit.

 $= \frac{1}{V}\kappa_B = 3n\kappa_B$

$$c = \frac{1}{V} \frac{\partial}{\partial T} \sum_{ks} \frac{\hbar \omega_s(k)}{\beta \hbar \omega_s(k)} = \frac{1}{V} \sum_{ks} k_B$$

OK! Reproduz o limite clássico de Dulong e Petit. Limite de baixas temperaturas: Modelo de Einstein

$$\omega_s(\mathbf{k}) = \omega_E$$

Fônons puramente óticos

$$c = \frac{1}{V} \frac{\partial}{\partial T} \sum_{ks} \frac{\hbar \omega_s(k)}{\beta \hbar \omega_s(k)} = \frac{1}{V} \sum_{ks} k_B$$

$$=\frac{3N}{V}k_B=3nk_B$$

OK! Reproduz o limite clássico de Dulong e Petit. Limite de baixas temperaturas: Modelo de Einstein

$$c = \frac{1}{V} \frac{\partial}{\partial T} \sum_{ks} \frac{\hbar \omega_s(k)}{\beta \hbar \omega_s(k)} = \frac{1}{V} \sum_{ks} k_B$$

$$=\frac{3N}{V}k_B=3nk_B$$

OK! Reproduz o limite clássico de Dulong e Petit. Limite de baixas temperaturas: Modelo de Einstein

$$c = \frac{1}{V} \frac{\partial}{\partial T} \sum_{ks} \frac{\hbar \omega_s(k)}{\beta \hbar \omega_s(k)} = \frac{1}{V} \sum_{ks} k_B$$

$$=\frac{3N}{V}k_B=3nk_B$$

OK! Reproduz o limite clássico de Dulong e Petit. Limite de baixas temperaturas: Modelo de Einstein

$$\boldsymbol{\omega}_{s}(\mathbf{k}) = \boldsymbol{\omega}_{E}$$

Fônons puramente óticos

$$c \approx e^{-\hbar\omega_E/k_BT}$$

Figure 11 Comparison of experimental values of the heat capacity of diamond with values calculated on the earliest quantum (Einstein) model, using the characteristic temperature $\theta_{\rm E} = \hbar \omega / k_{\rm B} = 1320$ K. To convert to J/mol-deg, multiply by 4.186.

Limite de baixas temperaturas: Modelo de Debye

 $\omega_s(\mathbf{k}) = ck$

Limite de baixas temperaturas: Modelo de Debye

 $\omega_{s}(\mathbf{k}) = ck$

$$c = \frac{1}{V} \frac{\partial}{\partial T} \sum_{\mathbf{k}s} \frac{\hbar ck}{e^{\beta\hbar ck} - 1} = \frac{3}{V} \frac{\partial}{\partial T} \frac{V}{(2\pi)^3} \int_{0}^{k_{D}} 4\pi k^2 \frac{\hbar ck}{e^{\beta\hbar ck} - 1} dk$$

Limite de baixas temperaturas: Modelo de Debye

$$c = \frac{1}{V} \frac{\partial}{\partial T} \sum_{ks} \frac{\hbar ck}{e^{\beta\hbar ck} - 1} = \frac{1}{V} \frac{\partial}{\partial T} \frac{V}{(2\pi)^3} \int_0^{k_D} 4\pi k^2 \frac{\hbar ck}{e^{\beta\hbar ck} - 1} dk$$

$$c = \frac{1}{V} \frac{\partial}{\partial T} \frac{V}{(2\pi)^3} 4\pi \int_0^{k_D} \frac{\hbar ck^3}{e^{\beta\hbar ck} - 1} dk = \frac{1\hbar c}{2\pi^2} \frac{\partial}{\partial T} \int_0^{k_D} \frac{k^3}{e^{\beta\hbar ck} - 1} dk$$

$$= \frac{1\hbar c}{2\pi^2} \int_0^{k_D} \frac{k^3 e^{\beta\hbar ck}}{(e^{\beta\hbar ck} - 1)^2} \frac{\hbar ck}{k_B T^2} dk$$

$$c = \frac{\hbar ck}{k_B T}$$

$$\Theta_D = \frac{\hbar ck_D}{k_B}$$

$$c = 9nk_B \left(\frac{T}{\Theta_D}\right)^3 \int_0^\infty \frac{x^4 e^x}{\left(e^x - 1\right)^2} dx$$

$$c = \frac{12\pi^4}{5} nk_B \left(\frac{T}{\Theta_D}\right)^3$$

$$c = 9nk_B \left(\frac{T}{\Theta_D}\right)^3 \int_0^\infty \frac{x^4 e^x}{\left(e^x - 1\right)^2} dx$$

Table 23.2		
TEMPERATURE DEPENDENCE	OF THE DEBYE	SPECIFIC HEAT

T/Θ_D	$c_v/3nk_B$	T/Θ_D	$c_v/3nk_B$	T/Θ_D	$c_v/3nk_B$
0.00	0	0.35	0.687	0.70	0.905
0.05	0.00974	0.40	0.746	0.75	0.917
0.10	0.0758	0.45	0.791	0.80	0.926
0.15	0.213	0.50	0.825	0.85	0.934
0.20	0.369	0.55	0.852	0.90	0.941
0.25	0.503	0.60	0.874	0.95	0.947
0.30	0,608	0.65	0.891	1.00	0.952

^a The table entries are the ratios of the Debye to the Dulong-Petit specific heats, that is, $c_v/3nk_B$, with c_v given by (23.26).

Source: J. de Launay, Solid State Physics, vol. 2, F. Seitz and D. Turnbull, eds., Academic Press, New York, 1956.

ELEMENT	$\Theta_D(\mathbf{K})$	ELEMENT	$\Theta_D(\mathbf{K})$
Li	400	A	85
Na	150	Ne	63
K	100		
		Cu	315
Be	1000	Ag	215
Mg	318	Au	170
Ca	230		
		Zn	234
в	1250	Cd	120
Al	394	Hg	100
Ga	240		
In	129	Cr	460
TI	96	Mo	380
		W	310

1860	Mn	400
625	Fe	420
360	Co	385
260	Ni	375
170	Pd	275
88	Pt	230
285	La	132
200	Gd	152
120	Pr	74
	1860 625 360 260 170 88 285 200 120	1860 Mn 625 Fe 360 Co 260 Ni 170 Pd 88 Pt 285 La 200 Gd 120 Pr

^a The temperatures were determined by fitting the observed specific heats c_v to the Debye formula (23.26) at the point where $c_v = 3nk_B/2$. Source: J. de Launay, *Solid State Physics*, vol. 2, F. Seitz and D. Turnbull, eds., Academic Press, New York, 1956.

$\boldsymbol{u}_{\boldsymbol{k}}(\boldsymbol{R},t) = \frac{1}{\sqrt{M}} \hat{\boldsymbol{\varepsilon}}(\boldsymbol{k}) e^{i(\boldsymbol{k}\cdot\boldsymbol{R}-\omega t)}$

$$\boldsymbol{P}_{tot} = M \frac{d}{dt} \sum_{\boldsymbol{R}} \boldsymbol{u}_{\boldsymbol{k}}(\boldsymbol{R}, t) = -i\omega\sqrt{M}e^{-i\omega t} \hat{\boldsymbol{\varepsilon}} \sum_{\boldsymbol{R}} e^{i\boldsymbol{k}\cdot\boldsymbol{R}}$$

$$=\begin{cases} 0, \text{ se } \mathbf{k} \neq 0\\ N, \text{ se } \mathbf{k} = 0 \end{cases}$$

$$\mathbf{p}' - \mathbf{p} = \mp \hbar (\mathbf{k} + \mathbf{G})$$
$$E' - E = \mp \hbar \omega_s(\mathbf{k})$$

$$\hbar(\mathbf{q}'-\mathbf{q}) = \mp \hbar \mathbf{G} \Longrightarrow \Delta \mathbf{q} = \mathbf{G}$$

Momento Cristalino

Espalhamento elástico satisfaz a condição de von Laue

Acoplamento Elétron-íon

$$\hat{H} = -\frac{\hbar^2}{2m_e} \sum_{i} \nabla_i^2 - \sum_{i,I} \frac{Z_I e^2}{|\mathbf{r}_i - \mathbf{R}_I|} + \frac{1}{2} \sum_{i \neq j} \frac{e^2}{|\mathbf{r}_i - \mathbf{r}_j|} - \sum_{I} \frac{\hbar^2}{2M_I} \nabla_I^2 + \frac{1}{2} \sum_{I \neq J} \frac{Z_I Z_J e^2}{|\mathbf{R}_I - \mathbf{R}_J|},$$

The standard explanation for charge-density wave (CDW) formation

"Recipe" for CDW ...

Peierls Instability

$$\begin{split} \phi^{\text{ind}}(\mathbf{q}) &= g\rho^{\text{ind}}(\mathbf{q}) \\ \rho^{\text{ind}}(\mathbf{q}) &= \chi_0(\mathbf{q})\phi(\mathbf{q}) = \chi_0(\mathbf{q}) \bigg[\phi^{\text{ext}}(\mathbf{q}) + \phi^{\text{ind}}(\mathbf{q}) \bigg] \\ \rho^{\text{ind}}(\mathbf{q},T) &= \frac{\chi_0(\mathbf{q},T)\phi^{\text{ext}}(\mathbf{q})}{1 - g\chi_0(\mathbf{q},T)} \qquad 1 - g\chi_0(\mathbf{q},T) = 0 \end{split}$$

Fröhlich
Hamiltonian
$$H_{\rm PI} = \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} a_{\mathbf{k}}^{\dagger} a_{\mathbf{k}} + \sum_{\mathbf{q}} \hbar \omega_{\mathbf{q}} b_{\mathbf{q}}^{\dagger} b_{\mathbf{q}}$$
$$+ \frac{1}{\sqrt{N}} \sum_{\mathbf{k},\mathbf{q}} g_{\mathbf{q}} a_{\mathbf{k}+\mathbf{q}}^{\dagger} a_{\mathbf{k}} (b_{-\mathbf{q}}^{\dagger} + b_{\mathbf{q}}),$$

For ideal 1D systems *any* Electron-Phonon Coupling leads to CDW!

C.-W. Chen et al., Rep. Prog. Phys. **79** 084505

Organic molecular crystal tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ) Introduction

ъ.

X. Zhu, et al. *Advances in Physics: X,* 2(3), 622-640 (2017).

X. Zhu, et al. *Advances in Physics: X,* 2(3), 622-640 (2017).

Peierls' argument

But...

Electron-electron interactions ?